
Operating System Resource
Management

Burton Smith

Technical Fellow

Microsoft Corporation

Background

• Resource Management (RM) is a primary
operating system responsibility

– It lets competing applications share a system

• Client RM in particular faces new challenges

– Increasing numbers of cores (hardware threads)

– Emergence of parallel applications

– Quality of Service (QoS) requirements

– The need to manage power and energy

Tweaking current practice is clearly not enough

Conventional OS Thread Scheduling
• The kernel maintains queues of runnable threads

– One queue per priority per core, for example

• A core chooses a thread from the head of its nonempty
queue of highest priority and runs it

• The thread runs for a “time quantum” unless it blocks
or a higher priority thread becomes runnable

• Thread priority can change at scheduling boundaries
• The new priority is based on what just happened:

– Unblocked from I/O (UI, storage , network)
– Preempted by a higher priority thread
– Quantum expired
– New thread creation
– etc…

Shortcomings

• Kernel thread blocking is expensive
– It incurs a needless change in protection

– User-level thread blocking is much cheaper

• Kernel thread progress is unpredictable
– This has made non-blocking synchronization popular

• Processes have little to say about core allocations
– but processes play a big role in memory management

• Service Level Agreements are difficult to ensure
– Priority is not a reliable determiner of performance

• Power and energy are not connected with priority

Current practice can’t address the new challenges

A Way Forward

• Resources should be allocated to processes
– Cores of various types

– Memory (working sets)

– Bandwidths, e.g. to shared caches, memory,
storage and interconnection networks

• The OS should:
– Optimize the responsiveness of the system

– Respond to changes in user expectations

– Respond to changes in process requirements

– Maintain resource, power and energy constraints

What follows is a scheme to realize this plan

Latency

• Latency determines process responsiveness
– The time from a mouse click to its result

– The time from a service request to its response

– The time from job launch to job completion

– The time to execute a specified amount of work

• The relationship is usually a nonlinear one
– Achievable latencies may be needlessly fast

– There is usually a threshold of acceptability

• Latency depends on the allocated resources
– Some resources will have more effect than others

– Effects will often vary with computational phase

Urgency

• The urgency function of a process defines how
latency translates into responsiveness

– Its shape expresses the nonlinearity of the relationship

– The shape will depend on the application and on the
current user interface state (e.g. minimized)

• We let total urgency be the instantaneous sum of
the current urgencies of the running processes

– Resources determine latencies determine urgencies

• Assigning resources to processes to minimize total
urgency maximizes system responsiveness

Urgency Function Examples

Latency

U
rg

en
cy

Service Requirement

Latency

U
rg

en
cy

Manipulating Urgency Functions

• Urgency functions are like priorities, except:

– They apply to processes, not kernel threads

– They are explicit functions of process latency

• The User Interface can adjust their slopes

– Up or down based on user behavior or preference

– The deadlines can probably be left alone

• Total urgency is easy to compute in the OS
given the process latencies

– Its objective is to minimize it

Latency Functions

• Latency will generally decrease with resources

– Latency increase as cores are added can be
avoided by fixed-overhead parallel decomposition

– Second derivatives will typically be non-negative

– Unfortunately, sometimes we have “plateaus”:

• We will assume any “plateaus” are ignorable

La
te

n
cy

Memory allocation

Determining Latency Functions

• Latency depends on the allocated resources

– It also depends on internal application state

• Unlike utility, latency must be measured

– By the OS, by a user-level runtime, or both

– The user-level runtime can suggest resource
changes based on dynamic application data

– Either could predict latency based on history

Corporate Resource Management

• The CEO owns the resources: people, space, …

– Activities are expected to meet performance targets

– Targets may change based on customer demand

– Just-In-Time Agreements also constrain performance

– The CEO optimizes total return across activities

• The activities ask for and compete for the resources

– Their needs may change as their work progresses

• The total available resources are bounded

– Surplus can be laid off/leased out, helping cash flow

• Cash on hand must not fall too low

– If it does, some activities might need to be put on hold

Computer Resource Management

• The OS owns the resources: cores, memory, …

– Processes are expected to meet performance targets

– Targets may change based on customer demand

– Service Level Agreements also constrain performance

– The OS optimizes total urgency across processes

• The processes ask for and compete for the resources

– Their needs may change as their work progresses

• The total quantity of available resources is bounded

– Surplus can be powered off, helping power consumption

• Battery energy must not fall too low

– If it does, some processes might need to be put on hold

RM As An Optimization Problem

Continuously minimize pP Up(Lp(ap,0, … ap,n-1) with
respect to the resource allocations ap,r , where

• P, Up, Lp, and the ap,r are all time-varying;

• P is the index set of runnable processes;

• The urgency Up depends on the latency Lp;

• Lp depends in turn on the allocated resources ap,r;

• ap,r  0 is the allocation of resource r to process p;

• pP ap,r = Ar , the available quantity of resource r.

– All slack resources are allocated to process 0

Convex Optimization

• A convex optimization problem has the form:

 Minimize f0(x1, … xm)

 subject to fi(x1, … xm)  0, i = 1, … k

 where the functions fi : R
m  R are all convex

• Convex optimization has several virtues

– It guarantees a single global extremum

– It is not much slower than linear programming

• RM is a convex optimization problem

Managing Power and Energy

• System power W can be limited by an affine
constraint p 0r wr·ap,r  W

• Energy can be limited using U0 and L0

– Assume all slack resources a0,r are powered off

– L0 is defined to be the total system power
• It will be convex in each of the slack resources a0,r

– U0 has a slope that depends on the battery charge
• Low-urgency work loses to P0 when the battery is depleted

Total Power

U
rg

en
cy

As charge depletes,
this slope increases

a0,r

To
ta

l P
o

w
er

Obtaining Derivatives

• The gradient of the objective function tells us
"which way is down”, thus enabling descent

• Recall the chain rule: U/ar = U/L·L/ar

• The urgency functions are no problem, but the
latency functions are another matter
– The user runtime can suggest estimates

– The OS might try to add or remove a small ar

– Historical data can be used if the process has the
same characteristics (e.g. is in the same “phase”)

– For this last idea machine learning might help

An Example

Example V4.xlsm

Prototype Schedules

• The OS can maintain a “prototype” schedule
– As events occur, it can be perturbed

– It forms a good initial feasible solution

• Processes with SRs can be left alone so long as
their urgency when invoked remains low
– There is usually an associated fixed frame rate

– The controlling urgency functions have two states

• Resources can be held in reserve if necessary
– To avoid the overhead of repurposing them

– They can be parked in an idle process (e.g. 0) with an
urgency function that tends to keep them there

Conclusions

• RM faces new challenges, especially on clients

• RM can be cast as convex optimization to help
address these challenges

• This idea is usable at multiple levels:

– Between an OS and its processes

– Between a hypervisor and its guest OSes

– Between a process and its subtasks

• Estimating latency as a function of resources
becomes an important part of the story

