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Background 

• Resource Management (RM) is a primary 
operating system responsibility 

– It lets competing applications share a system 

• Client RM in particular faces new challenges 

– Increasing numbers of cores (hardware threads) 

– Emergence of parallel applications 

– Quality of Service (QoS) requirements 

– The need to manage power and energy 

Tweaking current practice is clearly not enough 



Conventional OS Thread Scheduling 
• The kernel maintains queues of runnable threads 

– One queue per priority per core, for example 

• A core chooses a thread from the head of its nonempty 
queue of highest priority and runs it 

• The thread runs for a “time quantum” unless it blocks 
or a higher priority thread becomes runnable  

• Thread priority can change at scheduling boundaries 
• The new priority is based on what just happened: 

– Unblocked from I/O (UI, storage , network) 
– Preempted by a higher priority thread 
– Quantum expired 
– New thread creation 
– etc… 
 



Shortcomings 

• Kernel thread blocking is expensive 
– It incurs a needless change in protection 

– User-level thread blocking is much cheaper 

• Kernel thread progress is unpredictable 
– This has made non-blocking synchronization popular 

• Processes have little to say about core allocations 
– but processes play a big role in memory management 

• Service Level Agreements are difficult to ensure 
– Priority is not a reliable determiner of performance 

• Power and energy are not connected with priority  

Current practice can’t address the new challenges 



A Way Forward 

• Resources should be allocated to processes 
– Cores of various types 

– Memory (working sets) 

– Bandwidths, e.g. to shared caches, memory, 
storage and interconnection networks 

• The OS should: 
– Optimize the responsiveness of the system 

– Respond to changes in user expectations 

– Respond to changes in process requirements 

– Maintain resource, power and energy constraints 

What follows is a scheme to realize this plan 



Latency 

• Latency determines process responsiveness 
– The time from a mouse click to its result 

– The time from a service request to its response 

– The time from job launch to job completion 

– The time to execute a specified amount of work 

• The relationship is usually a nonlinear one 
– Achievable latencies may be needlessly fast 

– There is usually a threshold of acceptability 

• Latency depends on the allocated resources 
– Some resources will have more effect than others 

– Effects will often vary with computational phase 



Urgency 

• The urgency function of a process defines how 
latency translates into responsiveness 

– Its shape expresses the nonlinearity of the relationship 

– The shape will depend on the application and on the 
current user interface state (e.g. minimized) 

• We let total urgency be the instantaneous sum of 
the current urgencies of the running processes 

– Resources determine latencies determine urgencies 

• Assigning resources to processes to minimize total 
urgency maximizes system responsiveness 



Urgency Function Examples 
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Manipulating Urgency Functions 

• Urgency functions are like priorities, except: 

– They apply to processes, not kernel threads 

– They are explicit functions of process latency 

• The User Interface can adjust their slopes 

– Up or down based on user behavior or preference 

– The deadlines can probably be left alone 

• Total urgency is easy to compute in the OS 
given the process latencies 

– Its objective is to minimize it 



Latency Functions 

• Latency will generally decrease with resources 

– Latency increase as cores are added can be 
avoided by fixed-overhead parallel decomposition 

– Second derivatives will typically be non-negative 

– Unfortunately, sometimes we have “plateaus”: 

 

 

 

 

• We will assume any “plateaus” are ignorable 
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Memory allocation 



Determining Latency Functions 

• Latency depends on the allocated resources 

– It also depends on internal application state 

• Unlike utility, latency must be measured 

– By the OS, by a user-level runtime, or both 

– The user-level runtime can suggest resource 
changes based on dynamic application data 

– Either could predict latency based on history 



Corporate Resource Management 

• The CEO owns the resources: people, space, … 

– Activities are expected to meet performance targets 

– Targets may change based on customer demand 

– Just-In-Time Agreements also constrain performance 

– The CEO optimizes total return across activities 

• The activities ask for and compete for the resources 

– Their needs may change as their work progresses 

• The total available resources are bounded 

– Surplus can be laid off/leased out, helping cash flow 

• Cash on hand must not fall too low 

– If it does, some activities might need to be put on hold 



Computer Resource Management 

• The OS owns the resources: cores, memory, … 

– Processes are expected to meet performance targets 

– Targets may change based on customer demand 

– Service Level Agreements also constrain performance  

– The OS optimizes total urgency across processes 

• The processes ask for and compete for the resources 

– Their needs may change as their work progresses 

• The total quantity of available resources is bounded 

– Surplus can be powered off, helping power consumption 

• Battery energy must not fall too low 

– If it does, some processes might need to be put on hold 



RM As An Optimization Problem 

Continuously minimize pP Up(Lp(ap,0, … ap,n-1) with 
respect to the resource allocations ap,r , where 

• P, Up, Lp, and the ap,r are all time-varying; 

• P is the index set of runnable processes; 

• The urgency Up depends on the latency Lp; 

• Lp depends in turn on the allocated resources ap,r; 

• ap,r   0 is the allocation of resource r to process p; 

• pP ap,r = Ar , the available quantity of resource r. 

– All slack resources  are allocated to process 0 



Convex Optimization 

• A convex optimization problem has the form: 

 Minimize f0(x1, … xm) 

 subject to  fi(x1, … xm)  0, i = 1, … k 

 where the functions fi : R
m  R are all convex 

• Convex optimization has several virtues 

– It guarantees a single global extremum 

– It is not much slower than linear programming 

• RM is a convex optimization problem 



Managing Power and Energy 

• System power W can be limited by an affine 
constraint  p 0r  wr·ap,r  W  

• Energy can be limited using U0 and L0 

– Assume all slack resources a0,r  are powered off 

– L0 is defined to be the total system power 
• It will be convex in each of the slack resources a0,r 

– U0 has a slope that depends on the battery charge 
• Low-urgency work loses to P0 when the battery is depleted   
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As charge depletes, 
this slope increases 
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Obtaining Derivatives 

• The gradient of the objective function tells us 
"which way is down”, thus enabling descent 

• Recall the chain rule: U/ar = U/L·L/ar 

• The urgency functions are no problem, but the 
latency functions are another matter 
– The user runtime can suggest estimates 

– The OS might try to add or remove a small ar 

– Historical data can be used if the process has the 
same characteristics (e.g. is in the same “phase”) 

– For this last idea machine learning might help 

 

 



An Example 
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Prototype Schedules 

• The OS can maintain a “prototype” schedule 
– As events occur, it can be perturbed 

– It forms a good initial feasible solution 

• Processes with SRs can be left alone so long as 
their urgency when invoked remains low 
– There is usually an associated fixed frame rate 

– The controlling urgency functions have two states  

• Resources can be held in reserve if necessary 
– To avoid the overhead of repurposing them 

– They can be parked in an idle process (e.g. 0) with an 
urgency function that tends to keep them there 



Conclusions 

• RM faces new challenges, especially on clients 

• RM can be cast as convex optimization to help 
address these challenges 

• This idea is usable at multiple levels: 

– Between an OS and its processes 

– Between a hypervisor and its guest OSes 

– Between a process and its subtasks 

• Estimating latency as a function of resources 
becomes an important part of the story 


