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Historical Perspective

Aristotle: Event is probable when the majority of the most intellectual
persons deem it likely to happen.

Laplace: science of probability as the application of common sense.
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Historical Perspective

Aristotle: Event is probable when the majority of the most intellectual
persons deem it likely to happen.

Laplace: science of probability as the application of common sense.

Packaging of common sense for use by the most intellectual persons is a
moving target that depends on the science and technology of the times.

Galileo Huyghens Gauss Leibniz Bernoullis
D’'Alembert  Poincaré Einstein Feynman Von Mises
Legendre Kolmogorov  Wiener
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Current Perspective

Packaging of Information for Good Use

MODELS

STATEMENTS ABOUT

CONTROLLED EXPERIMENTS STATEMENTS ABOUT

ENGINEERED SYSTEMS
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Current Perspective

Packaging of Information for Good Use

MODELS

STATEMENTS ABOUT
CONTROLLED EXPERIMENTS

STATEMENTS ABOUT

ENGINEERED SYSTEMS

Four Components

@ Information @ Experiments
© Inductive Models o Calibration
© Deductive Models @ Propagation
@ Quantities of Interest @ Decisions

Current Influences
@ Multiscale Content
@ Algorithmic
@ Large Scale Computi

@ Extreme Consequenc
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VERY IMPORTANT !
@ Probabilities of events are not properties of a physical system.

@ They are conditioned on available information.
@ Probabilities change as information changes.

@ We want to find the set of knowledge and information required to
achieve specified confidence in our prediction.
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VERY IMPORTANT !
@ Probabilities of events are not properties of a physical system.

@ They are conditioned on available information.
@ Probabilities change as information changes.

@ We want to find the set of knowledge and information required to
achieve specified confidence in our prediction.

ALSO IMPORTANT !
@ Probabilistic models provides a means to package information for
good use.
@ There is great freedom in chosing a mathematically consistent yet
suitable packaging.
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Outline

@ Objectives
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Develop predictive capability that can be used as surrogate to reality.
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Develop predictive capability that can be used as surrogate to reality.

Obstacles
@ models are incomplete.

data is incomplete.

°
@ models are resolved with finite accuracy.
°

reality itself is incompletely characterized.
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Develop predictive capability that can be used as surrogate to reality.

Obstacles

models are incomplete. ‘modeling error‘

data is incomplete.

@ models are resolved with finite accuracy. \discretization error

reality itself is incompletely characterized.
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Error Budget

€hld,pm :
€pld,m :
Fd‘m :

€m -

U= 0‘/7.(/./)./77 + €h’d,p,m + 6p|d,m + (d‘m +€m

Limits on Predictability: Must be quantified

can be reduced through better numerics.
can be reduced through better statistics.
can be reduced through better data.

can be reduced through better models.
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Inspiration from Elementary Statistics
Outline

© Inspiration from Elementary Statistics
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Simple Example

o~ N(u,o)
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Simple Example

o~ N(M? G)
« can be reconstructed from estimates of y and o
&=a+sE &~ N(0,1)

Uncertainty- PNNL- Augast 16 2010 Y



Simple Example

o~ N(M? G)
« can be reconstructed from estimates of y and o
&=a+sE &~ N(0,1)

Estimates are random variables:

_ o
a=u+\/:n n ~ N(0,1)

(n— 2)52 2 = 2
oD =Yo7 i~ MO
i=1
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Simple Example

o~ N(M? G)
« can be reconstructed from estimates of y and o
&=a+sE &~ N(0,1)

Estimates are random variables:

_ o
a=u+\/:n n ~ N(0,1)

(n— 2)52 2 = 2
oD =Yo7 i~ MO
i=1

SO:
a = 64(5,777’}’17 e 77"*2)
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Simple Example

o~ N(M? G)
« can be reconstructed from estimates of p and o:
&=a+s€ &~ N(0,1)

Estimates are random variables:

_ o
a=u+\/:n n ~ N(0,1)

(n— 2)52 2 = 2
oD =Y ? MO
i=1

Upscaling:
&= 6‘(57 7, X%—Z)
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Outline

© Characterizing Uncertainty
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Justification:

@ random variables are typically substituted by a list of descriptors
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Justification:

@ random variables are typically substituted by a list of descriptors

e statistical moments (discrete list)
o values of PDF along abscissa points (continuous list)

@ these lists have issues:

@ not easy to reproduce the random variable from knowledge of the list
e items in the list cannot be interpreted in the context of approximation
theory (for example as coordinates)

Uncertainty- PNNL- August 16 2010 T



Justification:

@ random variables are typically substituted by a list of descriptors
e statistical moments (discrete list)
o values of PDF along abscissa points (continuous list)
@ these lists have issues:
@ not easy to reproduce the random variable from knowledge of the list
e items in the list cannot be interpreted in the context of approximation
theory (for example as coordinates)
@ polynomial chaos decomposition provides a representation for random
variable using coordinates in a vector space.
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A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:
o {a;(t)} isa CONS in L2[0,1]

© Opmp(x) = Hm |3 ap(t)ix(t)]  m=1,2,--

° \Ilm17...7mp(x) =& 1(x)- - Cbmmp(x)
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A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:
o {a;(t)} isa CONS in L2[0,1]
o Omp(x) = Han | Jy ap(t)x(t)] m=1,2,--- p=0,1,---
° Wm1,~--,mp(x) =&y 1(x) - ¢mp7p(X)

Then
li dyx =10
Nlnoo/ L

F[X] Z Am1, My ml,, (X)
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A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:
o {ai(t)} is a CONS in L2[0,1]
o Omp(x) = Han | Jy ap(t)x(t)] m=1,2,--- p=0,1,---
° Wm1,~--,mp(x) =&y 1(x) - q)mp,p(x)

Then
[im /
N—oco

The polynomial chaos decomposition of any square-integrable functional of
the Brownian motion converges in mean-square as N goes to infinity.

Flx] — Z Aml, Vi my(X)| dwx =0
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A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:
o {ai(t)} is a CONS in L2[0,1]
o Omp(x) = Han | Jy ap(t)x(t)] m=1,2,--- p=0,1,---
° Wm1,~--,mp(x) =&y 1(x) - q)mp,p(x)

Then
2

Iim/ Flx] — Z Aml, Vi my(X)| dwx =0

N—o0

The polynomial chaos decomposition of any square-integrable functional of
the Brownian motion converges in mean-square as N goes to infinity.

dimensional representation, the coefficients are functions of the

missing dimensions. That is, the coefficients are themselves random
variables dependent on the dimensions excluded from the representation.

Roger Ghanem Uncertainty- PNNL- August 16 2010 15 / 53




Polynomial Chaos

o0

alx,0) =) ai(x) Vi(£(6))

i=0
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Polynomial Chaos

o0

alx,0) =) ai(x) Vi(£(6))

i=0

Note

@ Must estimate «; constrained by information:

e experimental constraints:
- captures endogenous sources of uncertainty.
e physics constraints:
- depends on £ through a conservation law that must be honored.

@ Dimension of £ reflects complexity of the process a.

@ Probability measure of £ determines the geometry in which analysis
and approximation are carried out.
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Characterizing Uncertainty
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Characterizing Uncertainty

a(x,0) = [(ai(x))vi(&(®))
i=0

Py
Py

m WO
2
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Characterizing Uncertainty

a(x,0) = [(ai(x))vi(&(®))
i=0
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Characterizing Uncertainty
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Characterizing Uncertainty
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Characterizing Uncertainty

(alx,0)) = g i) Wi(€(6))
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Characterizing Uncertainty

= Y% ai(x)Wi(€(6))
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Characterizing Uncertainty

a(X70): f(X7 §17'” 7§n ) §n+17"' 7§m)

Aleatoric Uncertainty Model/Data Uncertainty
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Estimating Chaos Coefficients:

Galerkin projection
Maximum Likelihood
Maximum Entropy

Bayesian Inference

Ensemble Kalman Filtering
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Estimating Chaos Coefficients:

o Galerkin projection - Gaussian Sampling distribution

@ Maximum Likelihood - Asymptotic sampling distribution

@ Maximum Entropy - Asymptotic sampling distribution

@ Bayesian Inference - Posterior distribution of coefficients
@ Ensemble Kalman Filtering - Point estimates.
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SWARM Experiment:

ACOUSTIC ASSETS
RIV Oceanus
Acoustic Data
RV Endeavor R/ Cape Hatteras RF Telemetry Platform
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SWARM Data:
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Marginal PDF for one KL variables
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Joint PDF for two KL variables
MaxEnt

hist den
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Outline

@ Validation Example
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Sandia Validation Challenge

Problem Definition

Random load, (Specified), #(x?)

Subsystem: Three mass;
linear with linear+nonlinear
Elastic Foundation with connection to beam

variable stiffness: K, (x
f( )_\ﬁ Beam: Variable

l’TT‘l-—/ ) cross-section
A t properties:

iiii%iii'iiiiii%iiis A(), I(x)
. | K

50 in
Certify a design without any full-system tests
@ use only linear models
@ limited tests on subsystems

@ certification criterion:

Pam = Prob{r&a&da(t)] > 1.8edin/ sec’} < 0.01

Uncertainty- PNNL- August 16 2010
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Sandia Validation Challenge

Test data on subsystems

X, Response measurement locations

X
* 1
RS X”T B 3
e X0 1 2
X, 10
- Xia Xou Xap Xgp Xs XﬁL*4 1 Shock load, J®
k. I s

K A 35in

= 37.51in

“Weakly™
Nonlinear
connection

50 in
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Sandia Validation Challenge

Statistical Calibration

COF,,

Typical Mass, stiffness,
damping estimates of CDF.

COF,

Red Scatter indicates
dependence on further data.
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Sandia Validation Challenge

Outcome

Certification Criterion:

Pom = Prob{r&ag( la(t)| > 1.8e4in/sec’} < 0.01
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Sandia Validation Challenge

Outcome

Certification Criterion:

Pam == Prob{rga(;( la(t)| > 1.8edin/ sec?} < 0.01

Estimated as random variables - Variability comes from small sample size

Sample Mean of P,,,

Sample Variance of P,

0.0835

0.000830

Roger Ghanem

C.O.V. = 34% !
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Outline

Panoramic View of My Research
(5] y
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Applications

Prognosis for material integrity
Carbon Sequestration

Nuclear safety

Stochastic networks

Uncertainty in agent-based models
SmartGrid

Urban Sustainability
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Prognosis

anticipate damage in microstructure and recommend pre-emptive actions:
Multiscale Models: Transfer information from calibration scale to
prediction scale.

@ New multiscale constitutive behavior using random matrix theory and
stochastic Green's functions.

@ New stochastic models for microstructure.

o New decision tools and sensor placement algorithms.
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Panoramic View of My Research

Safe Carbon Sequestration

terrestri

trial
sequestration

power station CO, capture and separation

Roger Ghanem
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Panoramic View of My Research

Safe Carbon Sequestration

F,\;.
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Safe Carbon Sequestration

@ Reactive flow in uncertain subsurface formation.

@ Leakage with chemistry from caprock
(stochastic upscaling of caprock interface
with formation).

@ Algorithms for Petascale computing.
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Panoramic View of My Research

Risk analysis of next generation

Gas-Cooled Fast Reactor

28 inlet

Upper grid
damage

Coating jously:

molten m;

surtaces

Hole in
bafle plate

Ablated incore
instrument gui

Roger Ghanem
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fast nuclear reactors

TMI-2 Core End-State Configuration

A inlet

Cavity

- Loose core debris

Crust

Previously molten
material

Lower plenum debris.

o o Possible region
depleted in uranium
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Panoramic View of My Research

Risk analysis of next generation fast nuclear reactors

UQ with Multiphysics/ Multiscale/ Multimodel:

@ Understanding the interplay between neutron transport,
thermo-mechanical properties and failure of reactors.

@ Theory to characterize stochastic dynamics of coupled system.

@ Stochastic upscaling to describe the effect of neutron transport on
safety of reactor system.
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Stochastic networks and hybrid systems

@ Interface between network models of infrastructures, discrete models
of humans and continuum models of environmental effects.

@ Reaction kinetic networks: upscaling from molecular chemistry.

@ Stability and dynamics of hybrid systems.

Uncertainty- PNNL- Augast 16 2010 0 ) 5



Smart Grid

ger Ghanem
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Power Grid
liquilibrium & Stabillity
= Infueree of

randan permurtacion

- Maodel redution

- Deconposition af spatial
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‘Communication/Market contract
Transmission Lines (HV)
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Wind Generation

Control center/Market operator
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Roger Ghanem

Panoramic View of My Research

SmartGrid at USC

News: Thursday, December 3,
2009

LADWP Receives $60 Million For Smart
Grid Project

[ back ] [ comment ]

The Los Angeles Department of Water and Power
(LADWP) earlier this week was awarded over $60 million in
smart grid demonstration funding-the most of any other
municipally-owned utility in the country-to develop, deploy,
and test advanced smart grid technologies in partnership
with a consortium of top Southern California research
institutes including USC, UCLA, and CalTech/Jet
Propulsion Laboratory.

Uncertainty- PNNL- August 16 2010

The program will use the USC and UCLA campuses as
testing grounds for innovative technologies to prove the
viability of the demonstration technology. Through a
number of demonstration projects, LADWP and the
research institutes will gather data on how consumers us
energy in a variety of systems, testing the next generatic
of cyber-security technologies, and cutting-edge method
of integrating a significant number of plug-in hybrid elect
vehicles onto the grid. This work will provide invaluable
data on the benefits and cost-effectiveness of various
technologies, which will save time and money down the
road.

The universities will serve as microcosms of the entire ci

providing an innovative "micro-grid" where to carry out
testing in real-time within each campus environment.
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Sustainability by Design

@ Quantitative analysis of interactions, between human dynamics,
environmental factors, and policy.

@ Multiscale models of forests to manage natural-urban interface (fires,
wildlife sustainability ...)

@ Sensor placement for disaster avoidance in urban water distribution
systems.
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Sustainability by Design

Population Density

Behavior of Agents in ABM

Economic Activity
Ground Motion
Condition of Lifelines

InfoGrid
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Roger Ghanem
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amic View of My Resea
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Outline

© Conclusion
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Challenges

Philosphical

@ meaning of life and happiness.

Logical
@ e.g. dependence on new information.

@ Can underlying hypothesis be tested 7

Mathematical

o Construct a mathematical structure that permits the articulation of
the logical and philosophical imperatives.

@ Describe the problem within that mathematical structure.

Technological
@ Instruments to achieve requisite resolution of physical phenomenon.

o Computers to achieve requisite numerical resolution for mathematical
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Challenges/ Opportunities

Critical
@ understand the significance of enhanced predictive power.
e new quantities of interest.
@ understand the nature of added requirements:

e human: who sets confidence limits
e physical: is a coin toss random 7

Technical
@ explore new packaging of information.
@ move away from labeled probability models.
@ develop error estimation methods for the various components.
@ resolve the computational burden: error estimation.
°

develop stochastic reduced-order models: eg. curse of dimensionality.

@ optimize and design.
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