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Historical Perspective

Aristotle: Event is probable when the majority of the most intellectual
persons deem it likely to happen.
Laplace: science of probability as the application of common sense.

Packaging of common sense for use by the most intellectual persons is a
moving target that depends on the science and technology of the times.

Galileo Huyghens Gauss Leibniz Bernoullis
D’Alembert Poincaré Einstein Feynman Von Mises
Legendre Kolmogorov Wiener · · ·
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Current Perspective
Packaging of Information for Good Use

Four Components

1 Information

2 Inductive Models

3 Deductive Models

4 Quantities of Interest

Activity

Experiments

Calibration

Propagation

Decisions

Current Influences

Multiscale Content

Algorithmic

Large Scale Computing

Extreme Consequences
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VERY IMPORTANT !

Probabilities of events are not properties of a physical system.

They are conditioned on available information.

Probabilities change as information changes.

We want to find the set of knowledge and information required to
achieve specified confidence in our prediction.

ALSO IMPORTANT !

Probabilistic models provides a means to package information for
good use.

There is great freedom in chosing a mathematically consistent yet
suitable packaging.
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Objectives

Develop predictive capability that can be used as surrogate to reality.

Obstacles

models are incomplete.

data is incomplete.

models are resolved with finite accuracy.

reality itself is incompletely characterized.
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Objectives

Develop predictive capability that can be used as surrogate to reality.

Obstacles

models are incomplete. modeling error

data is incomplete. data error

models are resolved with finite accuracy. discretization error

reality itself is incompletely characterized. ??
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Objectives

Error Budget

U = Û|h,d ,p,m + εh|d ,p,m + εp|d ,m + εd |m︸ ︷︷ ︸
Limits on Predictability: Must be quantified

+εm

εh|d ,p,m : can be reduced through better numerics.
εp|d ,m : can be reduced through better statistics.
εd |m : can be reduced through better data.
εm : can be reduced through better models.

Roger Ghanem ()Uncertainty- PNNL- August 16 2010 9 / 53
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Inspiration from Elementary Statistics

Simple Example

α ∼ N(µ, σ)

α can be reconstructed from estimates of µ and σ:

α̂ = ᾱ + sξ ξ ∼ N(0, 1)

Estimates are random variables:

ᾱ = µ+

√
σ

n
η η ∼ N(0, 1)

(n − 2)s2

σ2
∼ χ2

n−2 =
n−2∑
i=1

γ2
i γi ∼ N(0, 1)

SO:
α̂ = α̂(ξ, η, γ1, · · · , γn−2)
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Inspiration from Elementary Statistics

Simple Example

α ∼ N(µ, σ)

α can be reconstructed from estimates of µ and σ:

α̂ = ᾱ + sξ ξ ∼ N(0, 1)

Estimates are random variables:

ᾱ = µ+

√
σ

n
η η ∼ N(0, 1)

(n − 2)s2

σ2
∼ χ2

n−2 =
n−2∑
i=1

γ2
i γi ∼ N(0, 1)

Upscaling:
α̂ = α̂(ξ, η, χ2

n−2)
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Characterizing Uncertainty

Justification:

random variables are typically substituted by a list of descriptors

statistical moments (discrete list)
values of PDF along abscissa points (continuous list)

these lists have issues:

not easy to reproduce the random variable from knowledge of the list
items in the list cannot be interpreted in the context of approximation
theory (for example as coordinates)

polynomial chaos decomposition provides a representation for random
variable using coordinates in a vector space.
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Characterizing Uncertainty

A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:

{αi (t)} is a CONS in L2[0, 1]

Φm,p(x) = Hm

[∫ 1
0 αp(t)dx(t)

]
m = 1, 2, · · · p = 0, 1, · · ·

Ψm1,··· ,mp (x) = Φm1,1(x) · · ·Φmp ,p(x)

Then

lim
N→∞

∫ w

C

∣∣∣∣∣F [x ]−
∑

m1,··· ,mN

Am1,··· ,mN
Ψm1,··· ,mp (x)

∣∣∣∣∣
2

dwx = 0

The polynomial chaos decomposition of any square-integrable functional of
the Brownian motion converges in mean-square as N goes to infinity.

For a finite-dimensional representation, the coefficients are functions of the
missing dimensions. That is, the coefficients are themselves random
variables dependent on the dimensions excluded from the representation.
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Characterizing Uncertainty

Polynomial Chaos

α(x , θ) =
∞∑
i=0

αi (x) Ψi (ξ(θ))
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Characterizing Uncertainty

Polynomial Chaos

α(x , θ) =
∞∑
i=0

αi (x) Ψi (ξ(θ))

Note

Must estimate αi constrained by information:

experimental constraints:
-ξ captures endogenous sources of uncertainty.
physics constraints:
-α depends on ξ through a conservation law that must be honored.

Dimension of ξ reflects complexity of the process α.

Probability measure of ξ determines the geometry in which analysis
and approximation are carried out.
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Characterizing Uncertainty

α(x , θ) =
∞∑
i=0

�� ��αi (x) Ψi (ξ(θ))

'

&

$

%
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Characterizing Uncertainty

�� ��α(x , θ) =
∑∞

i=0 αi (x)Ψi (ξ(θ))
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Characterizing Uncertainty
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Characterizing Uncertainty

�� ��α(x , θ) =
∑∞

i=0 αi (x)Ψi (ξ(θ))'

&

$

%�� ��αi =
∑

j αijΨj(ηi )
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Characterizing Uncertainty

α(x , θ) = f (x , ξ1, · · · , ξn︸ ︷︷ ︸
Aleatoric Uncertainty

, ξn+1, · · · , ξm︸ ︷︷ ︸
Model/Data Uncertainty

)
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Characterizing Uncertainty

Estimating Chaos Coefficients:

Galerkin projection

Maximum Likelihood

Maximum Entropy

Bayesian Inference

Ensemble Kalman Filtering

- Gaussian Sampling distribution

- Asymptotic sampling distribution

- Asymptotic sampling distribution

- Posterior distribution of coefficients

- Point estimates.
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Characterizing Uncertainty

SWARM Experiment:
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Characterizing Uncertainty

SWARM Data:
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Characterizing Uncertainty

Marginal PDF for one KL variables
MaxEnt
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Characterizing Uncertainty

Joint PDF for two KL variables
MaxEnt
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Validation Example
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Validation Example

Sandia Validation Challenge
Problem Definition

Certify a design without any full-system tests

use only linear models

limited tests on subsystems

certification criterion:

Pam := Prob{max
t>0
|a(t)| > 1.8e4in/ sec2} < 0.01
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Validation Example

Sandia Validation Challenge
Test data on subsystems
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Validation Example

Sandia Validation Challenge
Statistical Calibration
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Validation Example

Sandia Validation Challenge
Outcome

Certification Criterion:

Pam := Prob{max
t>0
|a(t)| > 1.8e4in/ sec2} < 0.01

Estimated as random variables - Variability comes from small sample size

Sample Mean of Pam Sample Variance of Pam

0.0835 0.000830

C.O.V. = 34% !
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Panoramic View of My Research

Outline
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Panoramic View of My Research

Applications

Prognosis for material integrity

Carbon Sequestration

Nuclear safety

Stochastic networks

Uncertainty in agent-based models

SmartGrid

Urban Sustainability
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Panoramic View of My Research

Prognosis

anticipate damage in microstructure and recommend pre-emptive actions:

Multiscale Models: Transfer information from calibration scale to
prediction scale.

New multiscale constitutive behavior using random matrix theory and
stochastic Green’s functions.

New stochastic models for microstructure.

New decision tools and sensor placement algorithms.
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Panoramic View of My Research

Safe Carbon Sequestration
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Panoramic View of My Research

Safe Carbon Sequestration
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Panoramic View of My Research

Safe Carbon Sequestration

Reactive flow in uncertain subsurface formation.

Leakage with chemistry from caprock
(stochastic upscaling of caprock interface
with formation).

Algorithms for Petascale computing.
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Panoramic View of My Research

Risk analysis of next generation fast nuclear reactors
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Panoramic View of My Research
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Panoramic View of My Research

Risk analysis of next generation fast nuclear reactors

UQ with Multiphysics/ Multiscale/ Multimodel:

Understanding the interplay between neutron transport,
thermo-mechanical properties and failure of reactors.

Theory to characterize stochastic dynamics of coupled system.

Stochastic upscaling to describe the effect of neutron transport on
safety of reactor system.
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Panoramic View of My Research

Stochastic networks and hybrid systems

Interface between network models of infrastructures, discrete models
of humans and continuum models of environmental effects.

Reaction kinetic networks: upscaling from molecular chemistry.

Stability and dynamics of hybrid systems.
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Panoramic View of My Research

Smart Grid

Weather
 Forecast

Update Price

Market Equilibrium
& Stability

- Influence of uncertainty 
in market balance and
stability
- Model reduction

Measurements

Update the
simulation Results

Power Grid 
Equilibrium & Stabillity
- Influence of 
random perturbation
- Model reduction
- Decomposition of spatial
& temporal scales

Update Generation

Estimate DG

Estimate Demand
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Panoramic View of My Research

SmartGrid at USC
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Panoramic View of My Research

Sustainability by Design

Quantitative analysis of interactions, between human dynamics,
environmental factors, and policy.

Multiscale models of forests to manage natural-urban interface (fires,
wildlife sustainability ...)

Sensor placement for disaster avoidance in urban water distribution
systems.
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Panoramic View of My Research

Sustainability by Design

Testbeds

POWER DEMAND 
PREDICTION

EARTHQUAKE IN 
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water use
power use

traffic
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Anticipation
w/ Climate

Change
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seismograms
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OF URBANUS

POLICY

Population Density
Behavior of Agents in ABM

Economic Activity
Ground Motion

Condition of Lifelines

Population Density
Behavior of Agents in ABM

Economic Activity
Ground Motion

Condition of Lifelines

ANTICIPATED 
LANDSCAPES

INFERRED 
LANDSCAPES
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Panoramic View of My Research

Big Picture

Info Systems       Models       Policies
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Conclusion

Challenges

Philosphical

meaning of life and happiness.

Logical

e.g. dependence on new information.

Can underlying hypothesis be tested ?

Mathematical

Construct a mathematical structure that permits the articulation of
the logical and philosophical imperatives.

Describe the problem within that mathematical structure.

Technological

Instruments to achieve requisite resolution of physical phenomenon.

Computers to achieve requisite numerical resolution for mathematical
problem.Roger Ghanem ()Uncertainty- PNNL- August 16 2010 51 / 53



Conclusion

Challenges/ Opportunities

Critical

understand the significance of enhanced predictive power.

new quantities of interest.

understand the nature of added requirements:

human: who sets confidence limits
physical: is a coin toss random ?

Technical

explore new packaging of information.

move away from labeled probability models.

develop error estimation methods for the various components.

resolve the computational burden: error estimation.

develop stochastic reduced-order models: eg. curse of dimensionality.

optimize and design.
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