
1/26/11 1

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

2

Size

R
at

e

TPP performance

Rank Site Computer Country Cores Rmax
[Pflops]

% of
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

NUDT YH, X5670 2.93Ghz
6C, NVIDIA GPU China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar / Cray
Cray XT5 sixCore 2.6 GHz USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0 HP ProLiant
SL390s G7 Xeon 6C X5670,

Nvidia GPU
Japan 73,278 1.19 52 1.40 850

5 DOE/SC/LBNL/NERSC Hopper, Cray XE6 12-core
2.1 GHz USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-100 Bull bullx super-
node S6010/S6030 France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner / IBM
BladeCenter QS22/LS21 USA 122,400 1.04 76 2.35 446

8 NSF / NICS /
U of Tennessee

Kraken / Cray
Cray XT5 sixCore 2.6 GHz USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene / IBM
Blue Gene/P Solution Germany 294,912 .825 82 2.26 365

10 DOE/ NNSA /
LANL & SNL Cray XE6 8-core 2.4 GHz USA 107,152 .817 79 2.95 277

Rank Site Computer Country Cores Rmax
[Pflops]

% of
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

NUDT YH, X5670 2.93Ghz
6C, NVIDIA GPU China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar / Cray
Cray XT5 sixCore 2.6 GHz USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0 HP ProLiant
SL390s G7 Xeon 6C X5670,

Nvidia GPU
Japan 73,278 1.19 52 1.40 850

5 DOE/SC/LBNL/NERSC Hopper, Cray XE6 12-core
2.1 GHz USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-100 Bull bullx super-
node S6010/S6030 France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner / IBM
BladeCenter QS22/LS21 USA 122,400 1.04 76 2.35 446

8 NSF / NICS /
U of Tennessee

Kraken / Cray
Cray XT5 sixCore 2.6 GHz USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene / IBM
Blue Gene/P Solution Germany 294,912 .825 82 2.26 365

10 DOE/ NNSA /
LANL & SNL Cray XE6 8-core 2.4 GHz USA 107,152 .817 79 2.95 277

500 Computacenter LTD HP Cluster, Xeon 2.5 GHz, GigE UK 5,856 .031 53

Name Peak
Pflop/s

“Linpack”
Pflop/s

Country

Tianhe-1A 4.70 2.57 China NUDT: Hybrid Intel/Nvidia/
Self

Nebula 2.98 1.27 China Dawning: Hybrid Intel/
Nvidia/IB

Jaguar 2.33 1.76 US Cray: AMD/Self
Tsubame 2.0 2.29 1.19 Japan HP: Hybrid Intel/Nvidia/IB
RoadRunner 1.38 1.04 US IBM: Hybrid AMD/Cell/IB
Hopper 1.29 1.054 US Cray: AMD/Self
Tera-100 1.25 1.050 France Bull: Intel/IB
Mole-8.5 1.14 .207 China CAS: Hybrid Intel/Nvidia/IB
Kraken 1.02 .831 US Cray: AMD/Self
Cielo 1.02 .817 US Cray: AMD/Self
JuGene 1.00 .825 Germany IBM: BG-P/Self

0

1

10

100

1,000

10,000

100,000

US

0

1

10

100

1,000

10,000

100,000

US

EU

0

1

10

100

1,000

10,000

100,000

US

EU

Japan

0

1

10

100

1,000

10,000

100,000
US

EU

Japan

China

¨  Has 3 Pflops systems
  NUDT, Tianhe-1A, located in Tianjin
 Dual-Intel 6 core + Nvidia Fermi w
/custom interconnect
  Budget 600M RMB

  MOST 200M RMB, Tianjin Government
 400M RMB

  CIT, Dawning 6000, Nebulea,
 located in Shenzhen

 Dual-Intel 6 core + Nvidia Fermi w
/QDR Infiniband
  Budget 600M RMB

  MOST 200M RMB, Shenzhen
 Government 400M RMB

  Mole-8.5 Cluster/320x2 Intel QC
 Xeon E5520 2.26 Ghz + 320x6
 Nvidia Tesla C2050/QDR Infiniband �

¨  Fourth one planned for Shandong

¨  The interconnect on the Tianhe-1A
 is a proprietary fat-tree.

¨  The router and network interface
 chips where designed by NUDT.

¨  It has a bi-directional bandwidth
 of 160 Gb/s, double that of QDR
 infiniband, a latency for a node
 hop of 1.57 microseconds, and an
 aggregated bandwidth of 61 Tb
/sec.

¨  On the MPI level, the bandwidth
 and latency is 6.3GBps(one
 direction)/9.3 GBps(bi- direction)
 and 2.32us, respectively.

¨  DOE Funded, Titan at ORNL,
 Based on Cray design with
 accelerators, 20 Pflop/s, 2012

¨  DOE Funded, Sequoia at
 Lawrence Livermore Nat. Lab,
 Based on IBM’s BG/Q,
 20 Pflop/s, 2012

¨  DOE Funded, BG/Q at Argonne
 National Lab, Based on
 IBM’s BG/Q,
 10 Pflop/s, 2012

¨  NSF Funded, Blue Waters at
 University of Illinois UC,
 Based on IBM’s Power 7 Proc,
 10 Pflop/s, 2012

0.1
1

10
100

1000
10000

100000
1000000

10000000
100000000

1E+09
1E+10
1E+11

19
96

20
02

20
08

20
14

20
20

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s SUM	

N=1	

N=500	

Gordon
Bell

Winners

¨  Town Hall Meetings April-June 2007
¨  Scientific Grand Challenges Workshops

 November 2008 – October 2009
  Climate Science (11/08),
  High Energy Physics (12/08),
  Nuclear Physics (1/09),
  Fusion Energy (3/09),
  Nuclear Energy (5/09),
  Biology (8/09),
  Material Science and Chemistry (8/09),
  National Security (10/09) (with NNSA)

¨  Cross-cutting workshops
  Architecture and Technology (12/09)
  Architecture, Applied Math and CS

 (2/10)

¨  Meetings with industry (8/09,
 11/09)

¨  External Panels
  ASCAC Exascale Charge (FACA)
  Trivelpiece Panel

15

MISSION IMPERATIVES

“The key finding of the Panel is that there are compelling needs for
 exascale computing capability to support the DOE’s missions in
 energy, national security, fundamental sciences, and the
 environment. The DOE has the necessary assets to initiate a
 program that would accelerate the development of such capability to
 meet its own needs and by so doing benefit other national interests.
 Failure to initiate an exascale program could lead to a loss of U. S.
 competitiveness in several critical technologies.”

 Trivelpiece Panel Report, January, 2010

Potential System Architecture
with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system memory
is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system memory
is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system memory
is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Exascale (1018 Flop/s) Systems:
Two possible paths (swim lanes)

19

  Light weight processors (think BG/P)
 ~1 GHz processor (109)
 ~1 Kilo cores/socket (103)
 ~1 Mega sockets/system (106)

  Hybrid system (think GPU based)
 ~1 GHz processor (109)
 ~10 Kilo FPUs/socket (104)
 ~100 Kilo sockets/system (105)

Socket Level
Cores scale-out for planar geometry

Node Level
3D packaging

•  Steepness of the ascent from terascale
 to petascale to exascale

•  Extreme parallelism and hybrid design
•  Preparing for million/billion way

 parallelism

•  Tightening memory/bandwidth
 bottleneck
•  Limits on power/clock speed

 implication on multicore
•  Reducing communication will become

 much more intense
•  Memory per core changes, byte-to-flop

 ratio will change

•  Necessary Fault Tolerance
•  MTTF will drop
•  Checkpoint/restart has limitations

Software infrastructure does not exist today

•  Commodity
 processor
  e.g. Intel Westmere

 6 core processor

•  GPU board
  e.g. Nvidia Fermi at

 500 Gflop/s peak
 double precision

21

•  Floating Point Systems FPS-164/MAX
 Supercomputer (1976)

•  Intel Math Co-processor (1980)
•  Weitek Math Co-processor (1981)

1980

1976

23

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia C2050 “Fermi”
448 “Cuda cores”
1.15 GHz
448 ops/cycle
515 Gflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane
64 Gb/s
1 GW/s

Many Floating-
Point Cores

Different Classes of
 Chips
 Home
 Games / Graphics
 Business
 Scientific

+ 3D Stacked
Memory

•  Most likely be a hybrid design
•  Think standard multicore chips and accelerator

 (GPUs)
•  Today accelerators are attached
•  Next generation more integrated
•  Intel’s “Knights Ferry” and “Knights Corner” to

 come.
  48 x86 cores

•  AMD’s Fusion in 2011 - 2013
  Multicore with embedded graphics ATI

•  Nvidia’s Project Denver plans to develop
 an integrated chip using ARM
 architecture in 2013.

25

•  NVIDIA-Speak
  448 CUDA cores (ALUs)

•  Generic speak
  14 processing cores

•  32 CUDA Cores (SIMD functional units) per core

  1 mul-add (2 flops) per ALU (2 flops/cycle)
  Best case theoretically: 448 mul-adds

•  1.15 GHz clock
•  14 * 32 * 2 * 1.15 = 1.03 Tflop/s peak

  All this is single precision
•  Double precision is half this rate, 515 Gflop/s

  In SP SGEMM performance 640 Gflop/s
  In DP DGEMM performance 300 Gflop/s
  Interface PCI-x16

Processing Core

27

• Must rethink the design of our
 software
  Another disruptive technology

• Similar to what happened with cluster
 computing and message passing

  Rethink and rewrite the applications,
 algorithms, and software

• Numerical libraries for example will
 change
  For example, both LAPACK and

 ScaLAPACK will undergo major changes
 to accommodate this

1.   Effective Use of Many-Core and Hybrid architectures
  Break fork-join parallelism
  Dynamic Data Driven Execution
  Block Data Layout

2.   Exploiting Mixed Precision in the Algorithms
  Single Precision is 2X faster than Double Precision
  With GP-GPUs 10x
  Power saving issues

3.   Self Adapting / Auto Tuning of Software
  Too hard to do by hand

4.   Fault Tolerant Algorithms
  With 1,000,000’s of cores things will fail

5.   Communication Reducing Algorithms
  For dense computations from O(n log p) to O(log p)

 communications
  Asynchronous iterations
  GMRES k-step compute (x, Ax, A2x, … Akx)

28

•  Fork-join, bulk synchronous processing 29

Step 1 Step 2 Step 3 Step 4 . . .

•  Break task
 into smaller
 operations;
 tiles

•  Unwind
 outer loop

•  Break into smaller tasks and remove
 dependencies

* LU does block pair wise pivoting

• Objectives
  High utilization of each core
  Scaling to large number of cores
  Shared or distributed memory

• Methodology
  Dynamic DAG scheduling
  Explicit parallelism
  Implicit communication
  Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

32

Fork-join
parallelism

DAG scheduled
parallelism

Time

•  We would generate the DAG,
 find the critical path and
 execute it.

•  DAG too large to generate ahead
 of time
  Not explicitly generate
  Dynamically generate the DAG as

 we go

•  Machines will have large
 number of cores in a
 distributed fashion
  Will have to engage in message

 passing
  Distributed management
  Locally have a run time system

•  Here is the DAG for a factorization on a
 20 x 20 matrix

•  For a large matrix say O(106) the DAG is huge
•  Many challenges for the software 34

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

•  DAG is dynamically
 generated and
 implicit

•  Everything
 designed for
 distributed
 memory systems

•  Runtime system on
 each node or core

•  Run time
•  Bin 1

•  See if new data has
 arrived

•  Bin 2
•  See if new dependences

 are satisfied
•  If so move task to Bin 3

•  Bin 3
•  Exec a task that’s ready
•  Notify children of

 completion
•  Send data to children
•  If no work do work

 stealing 39

•  What’s the best way to represent the DAG?
•  What’s the best approach to dynamically generating

 the DAG?
•  What run time system should we use?

  We will probably build something that we would target to the
 underlying system’s RTS.

•  What about work stealing?
  Can we do better than nearest neighbor work stealing?

•  What does the program look like?
  Experimenting with Cilk, Charm++, UPC, Intel Threads
  I would like to reuse as much of the existing software as

 possible

40

•  Sequential algorithm definition
•  Side-effect-free tasks
•  Directions of arguments (IN, OUT, INOUT)
•  Runtime resolution of data hazards (RaW, WaR, WaW)
•  Implicit construction of the DAG
•  Processing of the tasks by a sliding window

 Old concept
  Jade (Stanford University)
 SMP Superscalar (Barcelona Supercomputer Center)
 StarPU (INRIA)

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

  Regular trace
  Factorization steps pipelined
  Stalling only due to natural load
 imbalance

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

43
 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

LAPACK used 38.72 KJ Tile-Cholesky used 27.18 KJ.

TAMU, UTK, Virginia Tech
Dual-core 1.8GHz AMD Opteron.
4 cores in total.
The matrix size is 16000x16000.

Part of the NSF MuMI project

44
 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

LAPACK used 38.72 KJ Tile-Cholesky used 27.18 KJ.

TAMU, UTK, Virginia Tech
Dual-core 1.8GHz AMD Opteron.
4 cores in total.
The matrix size is 16000x16000.

Part of the NSF MuMI project

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

45

TAMU, UTK, Virginia Tech
Dual-core 1.8GHz AMD Opteron.
4 cores in total.
The matrix size is 16000x16000.

Part of the NSF MuMI project

LAPACK used 38.72 KJ DAG based Cholesky used 27.18 KJ.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Po
w

er
 (W

at
ts

)

Time (seconds)

System
CPU

Memory
Disk

Motherboad

46 Matrix Size

Exploiting Mixed Precision Computations

•  Single	 precision	 is	 faster	 than	 DP	 because:	
  Higher	 parallelism	 within	 floa:ng	 point	 units	

•  4 ops/cycle (usually) instead of 2 ops
/cycle

  Reduced	 data	 mo:on	 	
•  32 bit data instead of 64 bit data

  Higher	 locality	 in	 cache	
•  More data items in cache

48

•  Exploit 32 bit floating point as much as
 possible.
  Especially for the bulk of the computation

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results

•  Intuitively:
  Compute a 32 bit result,
  Calculate a correction to 32 bit result using

 selected higher precision and,
  Perform the update of the 32 bit results with the

 correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough
 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

•  Iterative refinement for dense systems, Ax = b, can work this
 way.

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough
 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

•  Iterative refinement for dense systems, Ax = b, can work this
 way.

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt.

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision.

•  Requires extra storage, total is 1.5 times normal;
•  O(n3) work is done in lower precision
•  O(n2) work is done in high precision
•  Problems if the matrix is ill-conditioned in sp; O(108)

PLASMA DP

PLASMA Mixed Precision

N = 8400, using 4
cores

PLASMA
DP

PLASMA
Mixed

Time to Solution (s) 39.5 22.8

GFLOPS 10.01 17.37

Accuracy 2.0E-02 1.3E-01

Iterations 7

System Energy
(KJ)

10852.8 6314.8

|| Ax − b ||
(|| A |||| X || + || b ||)Nε

Two dual-core 1.8 GHz AMD Opteron processors
Theoretical peak: 14.4 Gflops per node
DGEMM using 4 threads: 12.94 Gflops
PLASMA 2.3.1, GotoBLAS2
Experiments:

PLASMA LU solver in double precision
PLASMA LU solver in mixed precision

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo
p/
s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
 3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Single Precision

Double Precision

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo
p/
s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
 3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Single Precision

Mixed Precision

Double Precision

54

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

55 •  Outer/Inner Iteration

•  Outer iteration in 64 bit floating point and inner
 iteration in 32 bit floating point

Inner iteration:
In 32 bit floating point

Outer iterations using 64 bit floating point

56

2	

 6,021 18,000 39,000 120,000 240,000	

Matrix size	

Condition number	

Machine:���
 Intel Woodcrest (3GHz, 1333MHz bus)���

Stopping criteria:���
 Relative to r0 residual reduction (10-12)	

Speedups for mixed precision ���
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP ���
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)���
(Higher is better)	

Iterations for mixed precision ���
SP/DP iterative methods vs DP/DP ���
(Lower is better)	

2	

2	

2	

57

•  Exploit lower precision as much as possible
  Payoff in performance

•  Faster floating point
•  Less data to move

•  Automatically switch between SP and DP to match
 the desired accuracy
  Compute solution in SP and then a correction to the

 solution in DP
•  Potential for GPU, FPGA, special purpose processors

  Use as little you can get away with and improve the
 accuracy

•  Applies to sparse direct and iterative linear systems
 and Eigenvalue, optimization problems, where
 Newton’s method is used.

Correction = - A\(b ‒ Ax)

•  Major Challenges are ahead for extreme
computing
  Parallelism
  Hybrid
  Fault Tolerance
  Power
  … and many others not discussed here

•  We will need completely new approaches and
technologies to reach the Exascale level

•  This opens up many new opportunities for
applied mathematicians and computer
scientists

•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.

•  Moreover, the return on investment is more
 favorable to software.
  Hardware has a half-life measured in years, while

 software has a half-life measured in decades.
•  High Performance Ecosystem out of balance

  Hardware, OS, Compilers, Software, Algorithms, Applications
•  No Moore’s Law for software, algorithms and applications

60

“We can only see a short
 distance ahead, but we
 can see plenty there
 that needs to be
 done.”
  Alan Turing (1912

—1954)

•  www.exascale.org

Published in the January 2011 issue of
The International Journal of High
 Performance Computing Applications

•  Looking for people to help with
 Manycore/GPU linear algebra libraries
  Performance Evaluation
  Distributed memory software

  Contact:
• Jack Dongarra dongarra@cs.utk.edu

61

