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Rank  Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

Flops/
Watt 

1 Nat. SuperComputer 
Center in Tianjin 

NUDT YH, X5670 2.93Ghz 
6C, NVIDIA GPU China 186,368 2.57 55 4.04 636 

2 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar / Cray  
Cray XT5 sixCore 2.6 GHz USA 224,162 1.76 75 7.0 251 

3 Nat. Supercomputer 
Center in Shenzhen 

Nebulea / Dawning / TC3600 
Blade, Intel X5650, Nvidia 

C2050 GPU 
China 120,640 1.27 43 2.58 493 

4 GSIC Center, Tokyo 
Institute of Technology 

Tusbame 2.0 HP ProLiant 
SL390s G7 Xeon 6C X5670, 

Nvidia GPU 
Japan 73,278 1.19 52 1.40 850 

5 DOE/SC/LBNL/NERSC Hopper, Cray XE6 12-core 
2.1 GHz USA 153,408 1.054 82 2.91 362 

6 
Commissariat a 

l'Energie Atomique 
(CEA) 

Tera-100 Bull bullx super-
node S6010/S6030 France 138,368 1.050 84 4.59 229 

7 DOE / NNSA 
Los Alamos Nat Lab 

Roadrunner / IBM  
BladeCenter QS22/LS21 USA 122,400 1.04 76 2.35 446 

8 NSF / NICS /          
U of Tennessee 

Kraken / Cray  
Cray XT5 sixCore 2.6 GHz USA 98,928 .831 81 3.09 269 

9 Forschungszentrum 
Juelich (FZJ) 

Jugene / IBM 
Blue Gene/P Solution Germany 294,912 .825 82 2.26 365 

10 DOE/ NNSA /        
LANL & SNL Cray XE6 8-core 2.4 GHz USA 107,152 .817 79 2.95 277 
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500    Computacenter LTD   HP Cluster, Xeon 2.5 GHz, GigE      UK         5,856    .031      53                      



Name Peak 
Pflop/s 

“Linpack” 
Pflop/s 

Country 

Tianhe-1A 4.70 2.57 China NUDT: Hybrid Intel/Nvidia/
Self 

Nebula 2.98 1.27 China  Dawning: Hybrid Intel/
Nvidia/IB 

Jaguar 2.33 1.76 US Cray: AMD/Self 
Tsubame 2.0 2.29 1.19 Japan HP: Hybrid Intel/Nvidia/IB 
RoadRunner 1.38 1.04 US IBM: Hybrid AMD/Cell/IB 
Hopper 1.29 1.054 US Cray: AMD/Self 
Tera-100 1.25 1.050 France Bull: Intel/IB 
Mole-8.5  1.14 .207 China CAS: Hybrid Intel/Nvidia/IB 
Kraken 1.02 .831 US Cray: AMD/Self 
Cielo 1.02 .817 US Cray: AMD/Self 
JuGene 1.00 .825 Germany IBM: BG-P/Self 
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¨  Has 3 Pflops systems 
  NUDT, Tianhe-1A, located in Tianjin  
 Dual-Intel 6 core + Nvidia Fermi w
/custom interconnect 
  Budget  600M RMB 

  MOST 200M RMB, Tianjin Government
 400M RMB 

  CIT, Dawning 6000, Nebulea,
 located in Shenzhen 

 Dual-Intel 6 core + Nvidia Fermi w
/QDR Infiniband 
  Budget 600M RMB 

  MOST 200M RMB, Shenzhen
 Government 400M RMB 

  Mole-8.5 Cluster/320x2 Intel QC
 Xeon E5520 2.26 Ghz + 320x6
 Nvidia Tesla C2050/QDR Infiniband �

¨  Fourth one planned for Shandong 





¨  The interconnect on the Tianhe-1A
 is a proprietary fat-tree. 

¨  The router and network interface
 chips where designed by NUDT.  

¨  It has a bi-directional bandwidth
 of 160 Gb/s, double that of QDR
 infiniband, a latency for a node
 hop of 1.57 microseconds, and an
 aggregated bandwidth of 61 Tb
/sec. 

¨  On the MPI level, the bandwidth
 and latency is 6.3GBps(one
 direction)/9.3 GBps(bi- direction)
 and 2.32us, respectively. 



¨  DOE Funded, Titan at ORNL,
 Based on Cray design with
 accelerators, 20 Pflop/s, 2012 

¨  DOE Funded, Sequoia at
 Lawrence Livermore Nat. Lab,
 Based on IBM’s BG/Q,       
 20 Pflop/s, 2012 

¨  DOE Funded, BG/Q at Argonne
 National Lab,   Based on
 IBM’s BG/Q,                 
 10 Pflop/s, 2012 

¨  NSF Funded, Blue Waters at
 University of Illinois UC,
 Based on IBM’s Power 7 Proc,
 10 Pflop/s, 2012 
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¨  Town Hall Meetings April-June 2007 
¨  Scientific Grand Challenges Workshops  

 November 2008 – October 2009 
  Climate Science (11/08),  
  High Energy Physics (12/08),  
  Nuclear Physics (1/09),  
  Fusion Energy (3/09),  
  Nuclear Energy (5/09), 
  Biology (8/09),  
  Material Science and Chemistry (8/09),  
  National Security (10/09) (with NNSA) 

¨  Cross-cutting workshops 
  Architecture and Technology (12/09) 
  Architecture, Applied Math and CS

 (2/10) 

¨  Meetings with industry (8/09,
 11/09) 

¨  External Panels 
  ASCAC Exascale Charge (FACA) 
  Trivelpiece Panel  
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MISSION IMPERATIVES 

“The key finding of the Panel is that there are compelling needs for
 exascale computing capability to support the DOE’s missions in
 energy, national security, fundamental sciences, and the
 environment.  The DOE has the necessary assets to initiate a
 program that would accelerate the development of such capability to
 meet its own needs and by so doing benefit other national interests. 
 Failure to initiate an exascale program could lead to a loss of U. S.
 competitiveness in several critical technologies.” 

  Trivelpiece Panel Report,  January, 2010 



Potential System Architecture 
with a cap of $200M and 20MW  

Systems 2010 2018  Difference 
Today & 2018 

System peak 2 Pflop/s 1 Eflop/s O(1000) 

Power 6 MW ~20 MW 

System memory 0.3 PB 32 - 64 PB   [ .03 Bytes/Flop ] O(100) 

Node performance 125 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ] O(100) 

Node concurrency 12 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 3.5 GB/s 200-400GB/s 
(1:4 or 1:8 from memory BW) 

O(100) 

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 225,000 O(billion) O(10,000) 

Storage 15 PB 500-1000 PB (>10x system memory 
is min) 

O(10) – O(100) 

IO 0.2 TB 60 TB/s (how long to drain the 
machine) 

O(100) 

MTTI days O(1 day) - O(10) 
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Exascale (1018 Flop/s) Systems:  
Two possible paths (swim lanes) 
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  Light weight processors (think BG/P) 
 ~1 GHz processor (109) 
 ~1 Kilo cores/socket (103) 
 ~1 Mega sockets/system (106) 

  Hybrid system (think GPU based) 
 ~1 GHz processor (109) 
 ~10 Kilo FPUs/socket (104)    
 ~100 Kilo sockets/system (105)  

Socket Level 
Cores scale-out for planar geometry 

Node Level 
3D packaging 



•  Steepness of the ascent from terascale
 to petascale to exascale 

•  Extreme parallelism and hybrid design 
•  Preparing for million/billion way

 parallelism 

•  Tightening memory/bandwidth
 bottleneck 
•  Limits on power/clock speed

 implication on multicore 
•  Reducing communication will become

 much more intense  
•  Memory per core changes, byte-to-flop

 ratio will change 

•  Necessary Fault Tolerance 
•  MTTF will drop 
•  Checkpoint/restart has limitations 

Software infrastructure does not exist today  



•  Commodity
 processor 
  e.g. Intel Westmere

 6 core processor  

•  GPU board 
  e.g. Nvidia Fermi at

 500 Gflop/s peak
 double precision 

21 



•  Floating Point Systems FPS-164/MAX
 Supercomputer (1976) 

•  Intel Math Co-processor (1980) 
•  Weitek Math Co-processor (1981) 

1980 

1976 
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Intel Xeon 
8 cores 
3 GHz 

8*4 ops/cycle 
96 Gflop/s (DP) 

Nvidia C2050 “Fermi” 
448 “Cuda cores” 
1.15 GHz 
448 ops/cycle 
515 Gflop/s (DP) 

Commodity Accelerator (GPU) 

Interconnect 
PCI-X 16 lane 
64 Gb/s 
1 GW/s 



Many Floating- 
Point Cores 

Different Classes of
 Chips 
     Home 
     Games / Graphics 
     Business  
     Scientific 

+ 3D Stacked  
Memory 



•  Most likely be a hybrid design 
•  Think standard multicore chips and accelerator

 (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s “Knights Ferry” and “Knights Corner” to

 come. 
  48 x86 cores 

•  AMD’s Fusion in 2011 - 2013 
  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop              
 an integrated chip using ARM                     
 architecture in 2013. 
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•  NVIDIA-Speak 
  448  CUDA cores (ALUs) 

•  Generic speak 
  14  processing cores 

•  32 CUDA Cores (SIMD functional units) per core 

  1 mul-add (2 flops) per ALU (2 flops/cycle) 
  Best case theoretically: 448 mul-adds 

•  1.15 GHz clock  
•  14 * 32 * 2 * 1.15 = 1.03 Tflop/s peak 

  All this is single precision 
•  Double precision is half this rate, 515 Gflop/s 

  In SP SGEMM performance 640 Gflop/s 
  In DP DGEMM performance 300 Gflop/s 
  Interface PCI-x16 

Processing Core 
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• Must rethink the design of our
 software 
  Another disruptive technology 

• Similar to what happened with cluster
 computing and message passing 

  Rethink and rewrite the applications,
 algorithms, and software 

• Numerical libraries for example will
 change 
  For example, both LAPACK and

 ScaLAPACK will undergo major changes
 to accommodate this 



1.   Effective Use of Many-Core and Hybrid architectures 
  Break fork-join parallelism 
  Dynamic Data Driven Execution 
  Block Data Layout 

2.   Exploiting Mixed Precision in the Algorithms 
  Single Precision is 2X faster than Double Precision 
  With GP-GPUs 10x 
  Power saving issues 

3.   Self Adapting / Auto Tuning of Software 
  Too hard to do by hand 

4.   Fault Tolerant Algorithms 
  With 1,000,000’s of cores things will fail 

5.   Communication Reducing Algorithms 
  For dense computations from O(n log p) to O(log p)

 communications  
  Asynchronous iterations 
  GMRES k-step compute ( x, Ax,  A2x, … Akx ) 

28 



•  Fork-join, bulk synchronous processing 29 

Step 1 Step 2 Step 3 Step 4 . . . 



•  Break task
 into smaller
 operations;
 tiles 

•  Unwind
 outer loop 



•  Break into smaller tasks and remove
 dependencies 

* LU does block pair wise pivoting 



• Objectives 
  High utilization of each core 
  Scaling to large number of cores 
  Shared or distributed memory 

• Methodology 
  Dynamic DAG scheduling 
  Explicit parallelism 
  Implicit communication 
  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 

32 

Fork-join 
parallelism 

DAG scheduled 
parallelism 

Time 



•  We would generate the DAG,
 find the critical path and
 execute it. 

•  DAG too large to generate ahead
 of time 
  Not explicitly generate 
  Dynamically generate  the DAG as

 we go 

•  Machines will have large
 number of cores in a
 distributed fashion 
  Will have to engage in message

 passing 
  Distributed management 
  Locally have a run time system 



•  Here is the DAG for a factorization on a                
 20 x 20 matrix 

•  For a large matrix say O(106) the DAG is huge 
•  Many challenges for the software 34 



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 



•  DAG is dynamically
 generated and
 implicit 

•  Everything
 designed for
 distributed
 memory systems 

•  Runtime system on
 each node or core 

•  Run time 
•  Bin 1 

•  See if new data has
 arrived   

•  Bin 2 
•  See if new dependences

 are satisfied 
•  If so move task to Bin 3 

•  Bin 3 
•  Exec a task that’s ready 
•  Notify children of

 completion 
•  Send data to children 
•  If no work do work

 stealing 39 



•  What’s the best way to represent the DAG? 
•  What’s the best approach to dynamically generating

 the DAG? 
•  What run time system should we use? 

  We will probably build something that we would target to the
 underlying system’s RTS. 

•  What about work stealing? 
  Can we do better than nearest neighbor work stealing? 

•  What does the program look like? 
  Experimenting with Cilk, Charm++, UPC, Intel Threads 
  I would like to reuse as much of the existing software as

 possible 

40 



•  Sequential algorithm definition 
•  Side-effect-free tasks 
•  Directions of arguments (IN, OUT, INOUT) 
•  Runtime resolution of data hazards (RaW, WaR, WaW) 
•  Implicit construction of the DAG 
•  Processing of the tasks by a sliding window 

 Old concept 
  Jade (Stanford University) 
 SMP Superscalar (Barcelona Supercomputer Center) 
 StarPU (INRIA) 



8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz 

  Regular trace 
  Factorization steps pipelined 
  Stalling only due to natural load
 imbalance 
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LAPACK used 38.72 KJ  Tile-Cholesky used 27.18 KJ. 

TAMU, UTK, Virginia Tech 
Dual-core 1.8GHz AMD Opteron.   
4 cores in total.  
The matrix size is 16000x16000. 

Part of the NSF MuMI project 
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TAMU, UTK, Virginia Tech 
Dual-core 1.8GHz AMD Opteron.   
4 cores in total.  
The matrix size is 16000x16000. 

Part of the NSF MuMI project 

LAPACK used 38.72 KJ  DAG based Cholesky used 27.18 KJ. 
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46 Matrix Size 



Exploiting Mixed Precision Computations 

•  Single	  precision	  is	  faster	  than	  DP	  because:	  
  Higher	  parallelism	  within	  floa:ng	  point	  units	  

•  4 ops/cycle (usually) instead of 2 ops
/cycle 

  Reduced	  data	  mo:on	  	  
•  32 bit data instead of 64 bit data 

  Higher	  locality	  in	  cache	  
•  More data items in cache 
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•  Exploit 32 bit floating point as much as
 possible. 
  Especially for the bulk of the computation 

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results 

•  Intuitively:  
  Compute a 32 bit result,  
  Calculate a correction to 32 bit result using

 selected higher precision and, 
  Perform the update of the 32 bit results with the

 correction using high precision.  



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision. 

•  Requires extra storage, total is 1.5 times normal; 
•  O(n3) work is done in lower precision 
•  O(n2) work is done in high precision 
•  Problems if the matrix is ill-conditioned in sp; O(108) 



PLASMA DP 

PLASMA Mixed Precision 

N = 8400, using 4 
cores 

PLASMA 
DP 

PLASMA 
Mixed 

Time to Solution (s) 39.5 22.8 

GFLOPS 10.01 17.37 

Accuracy  2.0E-02 1.3E-01 

Iterations 7 

System Energy 
(KJ) 

10852.8 6314.8 

|| Ax − b ||
(|| A |||| X || + || b ||)Nε

Two dual-core 1.8 GHz AMD Opteron processors 
Theoretical peak: 14.4 Gflops per node 
DGEMM using 4 threads: 12.94 Gflops 
PLASMA 2.3.1, GotoBLAS2 
Experiments: 

PLASMA LU solver in double precision 
PLASMA LU solver in mixed precision 
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MUMPS package based on multifrontal approach which  
generates small dense matrix multiplies 



55 •  Outer/Inner Iteration 

•  Outer iteration in 64 bit floating point and inner
 iteration in 32 bit floating point 

Inner iteration: 
In 32 bit floating point 

Outer iterations using 64 bit floating point 
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2	


           6,021        18,000        39,000       120,000     240,000	


Matrix size	


Condition number	


Machine:���
   Intel Woodcrest (3GHz, 1333MHz bus)���

Stopping criteria:���
   Relative to r0 residual reduction (10-12)	


Speedups for mixed precision ���
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP ���
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)���
(Higher is better)	


Iterations for mixed precision ���
SP/DP iterative methods vs DP/DP ���
(Lower is better)	


2	

2	


2	
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•  Exploit lower precision as much as possible 
  Payoff in performance 

•  Faster floating point  
•  Less data to move 

•  Automatically switch between SP and DP to match
 the desired accuracy 
  Compute solution in SP and then a correction to the

 solution in DP 
•  Potential for GPU, FPGA, special purpose processors 

  Use as little you can get away with and improve the
 accuracy 

•  Applies to sparse direct and iterative linear systems
 and Eigenvalue, optimization problems, where
 Newton’s method is used. 

Correction = - A\(b ‒ Ax) 



•  Major Challenges are ahead for extreme 
computing 
  Parallelism   
  Hybrid 
  Fault Tolerance  
  Power 
  … and many others not discussed here 

•  We will need completely new approaches and 
technologies to reach the Exascale level 

•  This opens up many new opportunities for 
applied mathematicians and computer 
scientists 



•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.  

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.   

•  Moreover, the return on investment is more
 favorable to software. 
  Hardware has a half-life measured in years, while

 software has a half-life measured in decades. 
•  High Performance Ecosystem out of balance 

  Hardware, OS, Compilers, Software, Algorithms, Applications 
•  No Moore’s Law for software, algorithms and applications 



60 

“We can only see a short
 distance ahead, but we
 can see plenty there
 that needs to be
 done.” 
  Alan Turing (1912 

—1954) 

•  www.exascale.org 

Published in the January 2011 issue of 
The International Journal of High
 Performance Computing Applications 



•  Looking for people to help with  
 Manycore/GPU linear algebra libraries 
  Performance Evaluation 
  Distributed memory software 

  Contact: 
• Jack Dongarra dongarra@cs.utk.edu 
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