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Computers 1n the World
- Yardstick: Rmax from LINPACK MPP

Ax= b, dense problem
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- All data available from www.top500.org
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| Rank Site

1 Nat. SuperComputer

Center in Tianjin

DOE / Os
Oak Ridge Nat Lab

3 Nat. Supercomputer

Center in Shenzhen

5 | DOE/SC/LBNL/NERSC

Commissariat a
6 I'Energie Atomique

(CEA)
7 DOE / NNSA
Los Alamos Nat Lab
8 NSF / NICS /
U of Tennessee
9 Forschungszentrum
Juelich (FZJ)
10 DOE/ NNSA /

LANL & SNL

GSIC Center, Tokyo
Institute of Technology

Computer

NUDT YH, X5670 2.936hz
6C, NVIDIA GPU

Jaguar / Cray
Cray XT5 sixCore 2.6 GHz

Nebulea / Dawning / TC€3600

Blade, Intel X5650, Nvidia
c2050 6PU

Tusbame 2.0 HP Proliant
SL390s 67 Xeon 6C X5670,
Nvidia 6PU

Hopper, Cray XE6 12-core
2.1 6Hz

Tera-100 Bull bullx super-
node 56010/56030

Roadrunner / IBM
BladeCenter Q0522/.521

Kraken / Cray
Cray XT5 sixCore 2.6 GHz

Jugene / IBM
Blue Gene/P Solution

Cray XE6 8-core 2.4 GHz

< 36 List: The TOP10

Country

China
USA

China

Japan

USA

France

USA

UsSA

Germany

USA

Cores

186,368

224,162

120,640

73,278

153,408

138,368

122,400

98,928

294,912

107,152

Rmax

% of

[Pflops] | Peak

2.57

1.76

1.27

1.19

1.054

1.050

1.04

.831

.825

.817

55

75

43

52

82

84

76

81

82

79
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36 List: The TOP10

Site Computer

NUDT YH, X5670 2.936hz
6C, NVIDIA GPU

Nat. SuperComputer
Center in Tianjin

DOE / Os
Oak Ridge Nat Lab

Jaguar / Cray
Cray XT5 sixCore 2.6 GHz
Nebulea / Dawning / TC€3600
Blade, Intel X5650, Nvidia
€2050 6PV
Tusbame 2.0 HP ProlLiant
SL390s 67 Xeon 6C X5670,
Nvidia GPU

Nat. Supercomputer
Center in Shenzhen

GSIC Center, Tokyo
Institute of Technology

Hopper, Cray XE6 12-core

DOE/SC/LBNL/NERSC 2 1 Eliz

Commissariat a

I'Energie Atomique Tera-100 Bull bullx super-

node $6010/56030

(CEA)
DOE / NNSA Roadrunner / IBM
Los Alamos Nat Lab BladeCenter Q0522/.521
NSF / NICS / Kraken / Cray

U of Tennessee Cray XT5 sixCore 2.6 GHz

Forschungszentrum
Juelich (FZJ)

Jugene / IBM
Blue Gene/P Solution

DOE/ NNSA /

LANL & SNL Cray XE6 8-core 2.4 GHz

500 Computacenter LTD HP Cluster, Xeon 2.5 GHz, GigE

Country

China
USA

China

Japan

USA

France

USA

UsSA

Germany

USA
UK

Cores

186,368

224,162

120,640

73,278

153,408

138,368

122,400

98,928

294,912

107,152
5,856

Rmax | 7% of | Power | Flops/
[Pflops] | Peak | [MW]| Watt

2.57 55 | 4.04 636
1.76 75 7.0 | 251
1.27 43 2.58 | 493
1.19 52 1.40 850
1.054 82 | 291 362
1.050 84 4.59 229
1.04 76 2.35 446
.831 81 3.09 269
.825 82 | 2.26 | 365
.817 79 | 295 | 277
.031 53
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< Pflop/s Club (11 systems; Peak)

Peak “Linpack”
Pflop/s

Country

Pflop/s

Tianhe-1A 4.70 2.57 China | NUDT: Hybrid Intel/Nvidia/
Self

Nebula 2.98 1.27 China | Dawning: Hybrid Intel/
Nvidia/IB

Jaguar 2.33 1.76 US | Cray: AMD/Self

Tsubame 2.0 2.29 1.19 Japan | HP: Hybrid Intel/Nvidia/IB

RoadRunner 1.38 1.04 Us IBM: Hybrid AMD/Cell/IB

Hopper 1.29 1.054 Us Cray: AMD/Self

Tera-100 1.25 1.050 France | Bull: Intel/IB

Mole-8.5 1.14 207 China | CAS: Hybrid Intel/Nvidia/IB

Kraken 1.02 .831 US | Cray: AMD/Self

Cielo 1.02 817 US Cray: AMD/Self

JuGene 1.00 825 | Germany IBM: BG-P/Self
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“ Performance of Countries
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“ Performance of Countries
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“ China

Has 3 Pflops sys'rems

Dual- In'rel 6 core + Nvidia Fermi w

/custom interconnect i | M { "”'” “ IJ)JJ}L’JW
> Budget 600M RMB AT O 1l o
> MOST 200M RMB, Tianjin Government . L

400M RMB

» CIT, Dawning 6000, Nebulea,
located in Shenzhen

Dual-Intel 6 core + Nvidia Fermi w
/QDR Infiniband
> Budget 600M RMB

> MOST 200M RMB, Shenzhen
Government 400M RMB

> Mole-8.5 Cluster/320x2 Intel QC
Xeon EH5520 2.26 Ghz + 320x6
Nvidia Tesla C2050/QDR Infiniband

Fourth one planned for Shandong




<= Tianhe-1A

Main configuration of TH-1A system

Q 7,168 compute nodes (YH-X5670-FEP)
a 2 six-core CPU and 1 GPU per node
a CPU: Xeon X5670 (Westmere) - . 1) 1
a Processor speed - 2.93GHz | | L MR
2 GPU: nVIDIA M2050 = ——
a Connected with CPU by PCI-E
a 32GB memory per node

2 2U height
[ 7168(nodes) X 2(CPU) X 2.93(GHz) X 6(Cores) X 4 }
=i + Total:
| 4,701,061 GFlops
7168(nodes) X 1(GPU) X 1.15(GHz)*448(CUDA Cores)

| =3.692PFlops
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Tianhe-1A

The interconnect on the Tianhe-1A

is a proprietary fat-tree.

The router and network interface
chips where designed by NUDT.

It has a bi-directional bandwidth
of 160 Gb/s, double that of QDR
infiniband, a latency for a node
hop of 1.57 microseconds, and an
aggregated bandwidth of 61 Tb

/sec.

On the MPI level, the bandwidth
and latency is 6.3GBps(one
direction)/9.3 GBps(bi- direction)
and 2.32us, respectively.

o First stage: 16 nodes connected by 16-port switching board

o Second stage: all parts connected to eleven 384-port
switches

0 High radix router ASIC: NRC
o Feature size : 90nm
o Die size: 17.16mm x 17.16mm
o Package : FC-PBGA
0 2577 pins
o Throughput of single NRC: 2.56Tbps

0 Network interface ASIC: NIC
o Same Feature size and package
o Die size : 10.76mm x 10.76mm
o 675 pins, PCI-E G2 16X

CLAFI X 7.7



¢ 10+ Pflop/s Systems Planned 1n the
States

" DOE Funded, Titan at ORNL,
Based on Cray design with

accelerators, 20 Pflop/s, 2012

" DOE Funded, Sequoia at
Lawrence Livermore Nat. Lab,
Based on IBM's BG/Q,

20 Pflop/s, 2012

" DOE Funded, B6/Q at Argonne
National Lab, Based on
IBM's BG/Q,

10 Pflop/s, 2012

" NSF Funded, Blue Waters at
University of Illinois UC,
Based on IBM's Power 7 Proc,
10 Pflop/s, 2012
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Performance Development in Top500

1 Eflop/s

100 Pflop/s
10 Pflop/s

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s_
100 Gflop/g

10 Gflop/s
1floplsI'|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

100 Mflop/s o S

o
N

199
2008
2014
2020
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Exascale Applications and Technology

Scientific Grand Challenges Modeling and
FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND S|mUIatI°n at 'he

Town Hall Meetings April-June 2007

Scientific Grand Challenges Workshops
November 2008 - October 2009

>

YV VY VYV

>

Climate Science (11/08),

High Energy Physics (12/08),

Nuclear Physics (1/09),

Fusion Energy (3/09),

Nuclear Energy (5/09),

Biology (8/09),

Material Science and Chemistry (8/09),
National Security (10/09) (with NNSA)

Cross-cutting workshops

>
>

Architecture and Technology (12/09)

Architecture, Applied Math and CS
(2/710)

Meetings with industry (8/09,
11/09)

External Panels

>
>

ASCAC Exascale Charge (FACA)
Trivelpiece Panel

THE ROLE OF COMPUTING AT THE EXTREME SCALE Exascale for
Energy and the

* Washington, OC, Environment
Scientific Grand Challenges

I
e o o4

o

H2-air LSB flame

“The key finding of the Panel is that there are compelling needs for
exascale computing capability to support the DOE's missions in
energy, national security, fundamental sciences, and the
environment. The DOE has the necessary assets to initiate a
program that would accelerate the development of such capability to
meet its own needs and by so doing benefit other national interests.
Failure to initiate an exascale program could lead to a loss of U. S.
competitiveness in several critical technologies.”

Trivelpiece Panel Report, January, 2010



Potential System Architecture

with a cap of $200M and 20MW

m

System peak 2 Pflop/s
Power 6 MW
System memory 0.3 PB
Node performance 125 GF
Node memory BW 25 GB/s
Node concurrency 12
Total Node Interconnect BW 3.5 GB/s
System size (nodes) 18,700
Total concurrency 225,000
Storage 15 PB
1O 0.2 TB
MTTI days



Potential System Architecture

with a cap of $200M and 20MW

m“

System peak
Power

System memory
Node performance
Node memory BW
Node concurrency

Total Node Interconnect BW

System size (nodes)
Total concurrency

Storage
1O

MTTI

2 Pflop/s
6 MW
0.3 PB
125 GF

25 GB/s

12

3.5 GB/s

18,700
225,000

15 PB

0.2 TB

days

1 Eflop/s
~20 MW
32 -64PB [.03 Bytes/Flop ]
1,2 or 15TF
2 - 4TB/s
O(1k) or 10k

200-400GB/s
(1:4 or 1:8 from memory BW)

O(100,000) or O(1M)
O(billion)
500-1000 PB (>10x system memory
is min)

60 TB/s (how long to drain the
machine)

O(1 day)



Potential System Architecture

with a cap of $200M and 20MW

Systems Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s 0O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [ .03 Bytes/Flop ] O(100)

Node performance 125 GF 1,2 or 15TF O(10) — O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) — O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100)

(1:4 or 1:8 from memory BW)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) — O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system memory O(10) — O(100)

is min)

[e) 0.2 TB 60 TB/s (how long to drain the O(100)

machine)

MTTI days O(1 day) - O(10)



Exascale (10'8 Flop/s) Systems:
Two possible paths (swim lanes)

1 Light weight processors (think BG /P)
~1 GHz processor (107)
~1 Kilo cores/socket (103)
~1 Mega sockets/system (10°)

Socket Level
Cores scale-out for planar geometry

-1 Hybrid system (think GPU based) ==
~1 GHz processor (107) w

~10 Kilo FPUs/socket (104) s =
~100 Kilo sockets/system (10°) ﬁ

Node Level
3D packaging




¢ Factors that Necessitate Redesign of

ICL

Our Software

e Steepness of the ascent from terascale
to petascale to exascale
o Extreme parallelism and hybrid design
e Preparing for million/billion way
parallelism
e Tightening memory/bandwidth
bottleneck

« Limits on power/clock speed
implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change

e Necessary Fault Tolerance
o« MTTF will drop
o Checkpoint/restart has limitations

Software infrastructure does not exist today

Average Number of Cores per Supercomputer for Top 20 Systems
125,000

100,000

75,000

50,000

25,000 I
CORES l

500 '00 ’01 ’02 '03 '04 ’'05 ’'06 °'07 ’08 ’09 10
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Trend Today Commodity + Accelerators

« Commodity
processor

= e.g. Intel Westmere
6 core processor

Xeon 5660

* GPU board TITaaE
» e.g. Nvidia Fermi at 57 515
500 Gflop/s peak GELOPS GFLOPS

double precision
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~ We Have Seen This Before

* Floating Point Systems FPS-164/MAX
Supercomputer (1976)

* Intel Math Co-processor (1980)
* Weitek Math Co-processor (1981)

===

|

T‘h e lnt el:w A’iath C ()PI‘() C e SS ()r / There's one for every machine. !15 }‘{,\s'rg
i$ for crunching numbers faster. i

Sd

———

SO287 Fasmily. Fe 3028
tuased mac

T —

It EASY!
copmecsors. Ewey PC R il I
Kot Just plud It in and

s SAFE
v
W
. ; :
0 il
n
"

BOX7SX Fi S9SN ™
wed ruchine

(800) 3383373 i the S and Canada
{53 6297384 L Lt ematioal

Peranal Compater Enbarcement




¢ Commodity plus Accelerators

ICLLr"

Commodity Accelerator (GPU)
Intel Xeon Nvidia C2050 “Fermi”
8 cores 448 “Cuda cores”
3 GHz 1.15 GHz
8*4 ops/cycle AAS-aoslovele

96 Gflop/s (DP) 515 Gflop/s (DP)

Device Memory

erconnect
PCI-X lane

64 Gb/s

1 GW/s

23
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What’s Next?

Mlxed La i i
All Large Core i i

Many Floating- photonic NoC N
Point Cores S

3D memory
layers

multi-core
processor layer

+ 3D Stacked
Memory

e e

w

Small Core i Many Small Cores
i ii o
ii - S
- -
. -
. -
All Small Comd-ddd-d---

Different Classes of
Chips
Home
Games / Graphics
Business
Scientific
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Future Computer Systems @)

Most likely be a hybrid design

Think standard multicore chips and accelerator
(GPUs)

Today accelerators are attached
Next generation more integrated
Intel’s “Knights Ferry” and “Knights Corner” to

come. <&
AMD. g "
The future is fusion —

= 48 x86 cores
AMD’s Fusion in 2011 - 2013

= Multicore with embedded graphics ATI
Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

25
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~ NVIDIA Tesla C2050 (Fermi), GF100 Chip

* NVIDIA-Speak
= 448 CUDA cores (ALUs)

* Generic speak

= 14 processing cores
» 32 CUDA Cores (SIMD functional units) per core

1 mul-add (2 flops) per ALU (2 flops/cycle)

= Best case theoretically: 448 mul-adds

e 1.15 GHz clock
e 14*32*2*1.15 =1.03 Tflop/s peak

= All this is single precision
« Double precision is half this rate, 515 Gflop/s

= In SP SGEMM performance 640 Gflop/s T "_"""
= In DP DGEMM performance 300 Gflop/s EEd HHEEN SIS SaiE | ESSH HES £
» |nterface PCI-x16

Processing Core

Foymarphtrgine [l Pobmorph tngine Jil Poymor crane [l Poymorn Engae Poymorph Evgine Jll Potymoron Engine Jil Potymorn Engine il Potymorn Engine
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“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

« Numerical libraries for example will
change

= For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

27



~  Five Important Software Features to
Consider When Computing at Scale

1. Effective Use of Many-Core and Hybrid architectures
= Break fork-join parallelism
= Dynamic Data Driven Execution
= Block Data Layout
2. Exploiting Mixed Precision in the Algorithms
= Single Precision is 2X faster than Double Precision
=  With GP-GPUs 10x
= Power saving issues
3. Self Adapting / Auto Tuning of Software
= Too hard to do by hand
4. Fault Tolerant Algorithms
=  With 1,000,000’s of cores things will fail

5. Communication Reducing Algorithms

= For dense computations from O(n log p) to O(log p)
communications

= Asynchronous iterations
=  GMRES k-step compute ( x, Ax, AZx, ... Akx)
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< LAPACK LU/LLT/QR

ii

Step 1 > Step 2 —> Step 3 —> Step4 - - -

il is

ab

{ { { {
A A A A

S Y A Y S e 2N Y

* Fork-join, bulk synchronous processing =



Q)
“~ Tiled Operations & Look Ahead

e Break task
into smaller ‘ - —
operations;
tiles

« Unwind
outer loop
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< Parallel Tasks in LU/LLT/QR

N[ ]
-| Il
J.J.J

_— —_ ep .

o Break mto smaller tasks and remove

dependencies
=»IIII Ty | Q\I S
-lulfliili“ ll'{=_jl N
| L] . u L \I ® O
R
it \I o

* LU does block pair wise pivoting



¢ PLASMA: Parallel Linear Algebra s/w

ICLOr"

for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores x4
= Shared or distributed memory

‘Methodology
= Dynamic DAG scheduling
= Explicit parallelism
* Implicit communication
= Fine granularity / block data layout

*Arbitrary DAG with dynamic scheduling
; JEE I T _EeE TE—C

E EF? ;___ Fork-join
% %—.% E-:':E el parallelism

DAG scheduled

parallelism

Time > 32 >
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““ If We Had A Small Matrix Problem

* We would generate the DAG,
find the critical path and
execute it.

* DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as

we g0

* Machines will have large
number of cores in a
distributed fashion

= Will have to engage in message
passing
= Distributed management

= Locally have a run time system



c

<= The DAGs are Large

 Here is the DAG for a factorization on a
20 x 20 matrix

« For a large matrix say 0(10°) the DAG is huge
* Many challenges for the software 34



© PLASMA Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/l




© PLASMA Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/




© PLASMA Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window




© PLASMA Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window




* DAG and Scheduling

 DAG is dynamically ~ ° Runtime
generated and » Bin1
impli cit . S;ii:fer;ew data has
e Everything . Bin 2
designed for  See if new dependences
distributed are satisfied

memory Systems B-. If;o move task to Bin 3
e DIN

e Runtime system on « Exec a task that’s ready

each node or core e Notify children of
completion
« Send data to children

e If no work do work

stealing 39



{\
< Some Questions

* What’s the best way to represent the DAG?

* What’s the best approach to dynamically generating
the DAG?
* What run time system should we use?

= We will probably build something that we would target to the
underlying system’s RTS.

- What about work stealing?
= Can we do better than nearest neighbor work stealing?

* What does the program look like?
= Experimenting with Cilk, Charm++, UPC, Intel Threads

= | would like to reuse as much of the existing software as
possible

40
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“PLASMA Scheduling

Dynamic Scheduling with QUARK

. Sequential algorithm definition

- Side-effect-free tasks

- Directions of arguments (IN, OUT, INOUT)

- Runtime resolution of data hazards (RaW, WaR, WaW)
- Implicit construction of the DAG

- Processing of the tasks by a sliding window

e OIld concept
e Jade (Stanford University)
e SMP Superscalar (Barcelona Supercomputer Center)
e StarPU (INRIA)
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“ PLASMA Scheduling

Dynamic Scheduling: Tile LU Trace

e Regular trace
e Factorization steps pipelined
e Stalling only due to natural load

imbalance

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz



¢ Cholesky Factorization: Power

ICL

__ Considerations

- TAMU, UTK, Virginia Tech

E1E)
Q-.

4 cores in total.
The matrix size is 16000x16000.

RRRRIE
0l 0 .55 f 2 2 1.5
== )

3

oI

o l...

“ =

o

bR — — -
o

s

Part of the NSF MuMI project

3

: 2 \
e = Dual-core 1.8GHz AMD Opteron.

43



¢ Cholesky Factorization: Power

ICL

__ Considerations

(Watts)

Power

EE

[=lll=]
(=

!

ll
[Ei*

13

)

3

o |
Q
gEE
»

o

o a
o

s

3

LAPACK used 38.72 KJ

TAMU, UTK, Virginia Tech
Dual-core 1.8GHz AMD Opteron.

4 cores in total.
The matrix size is 16000x16000.

Part of the NSF MuMI project
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A

Power (Watts)

CL

=)

[=]

=]
o (12 2,

!

I
[5

Power
SULLUl

disk, memory
fan and elc

NI Labview
[

Data Collection

*®

multiple nodes beowulf

300

Cholesky Factorization: Power
____Considerations

NI data
owe
O resistor t &) acquisition
< system
) = t'
Main board

Time (seconds)

LAPACK used 38.72 KJ

200

TAMU, UTK, Virginia Tech
Dual-core 1.8GHz AMD Opteron.
4 cores in total.

The matrix size is 16000x16000.

Part of the NSF MuMI project

300 T T

250 -

foipenpriy P - ”
1ﬁfr'*r]vl | NSRS Aat Mt MA AN | A

200

Power (Watts)

150 - WMWWMWWWMML

100

e System
W CPU ------- ‘W
Memory «:-eeee-
Disgk e
Motherboad ===~
50

150

Time (seconds)

DAG based Cholesky used 27.18 KJ.

200

45
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<= Scaling for LU

12-core 4-socket 2.1 GHz AMD Opteron 6172 Magny-Cours

PLASMA _dgetrf

250

“1=48 cores

=24 cores
={==12 cores

0 5000 10000 15000 20000
Matrix Size

46



< Exploiting Mixed Precision Computations

« Single precision is faster than DP because:
= Higher parallelism within floating point units

* 4 ops/cycle (usually) instead of 2 ops
/cycle

= Reduced data motion

« 32 bit data instead of 64 bit data
" Higher locality in cache

* More data items in cache



N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

48



N . . . . .
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n’)
r=>b- Ax o(n’)
WHILE || r || not small enough
z = L\(U\r) o(n?
X=X+2Z o(n’)
r=>b- Ax o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.
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~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=>b- Ax DOUBLE o(n’)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)
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Power Profiles

Two dual-core 1.8 GHz AMD Opteron processors
Theoretical peak: 14.4 Gflops per node
DGEMM using 4 threads: 12.94 Gflops
PLASMA 2.3.1, GotoBLAS2
Experiments:
PLASMA LU solver in double precision
PLASMA LU solver in mixed precision

N = 8400, using 4 PLASMA PLASMA
cores DP Mixed

Time to Solution (s) 39.5 22.8

GFLOPS 10.01 17.37

Accuracyj 4, p 1| 2.0E-02 1.3E-01
(LA X I +115)Ne

Iterations 7

System Energy 10852.8 6314.8

(KJ)

Power (Watts)

Power (Watts)

300

50

300

PLASMA DP

e e R
10 20 30
Time (seconds)

Fantie Lyl
40 50

PLASMA Mixed Precision

I
40 50
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960 3200 5120 7040 8960 11200 13120

Matrix size

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.
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Matrix size

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.
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Sparse Direct Solver and Iterative
Refinement

54

MUMPS package based on multifrontal approach WhICh
generates small dense matrix multiplies

Opteron wiintel compiler I lterative Refinement

O Single Precision

Speedup Over DP
]
1.8

7
1.6-4 B
14
271

, _
084 | [f
0.6+

0.4

021
o—FM
[
6‘¢

Tim Davis's Collection, n=100K - 3M
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< Sparse Iterative Methods (PCG)

 Quter/Inner lteration Inner iteration:

55 In 32 bit floating point

Outer iterations using 64 bit floating point

initi Compute 7?0 = b — Az(®) for some initial guess z(%)
Compute 7(°) = b — Az(?) for some initial guess z(%) Compute 1) =
= ‘- solve Mz(i-1) — p(i-1)
for 1=1,2,... e 501

solve M z(i=1) = p(i=1) ifi=1
T (2 p) = 20
Pi—1 — 71(2_1) Z(Z_l) else
eq - Bi—1 = pi-1/pi-2
if:=1 ) = 261 1 g,_ =D
1) — (0 endif
pt) = 20 ¢ = Ap®)
else % = pa p4
20 = g(i=1) 4 Q’z'pl
Bi—1 = pi—1/pi-2 20) = 1li=1) _ el
p(z) — (i=1) + /3 1p(i_ 1) check convergence; continue if necessary
-~ 1= end
endif

¢ = Apt)

a; = pi_y /p®" ¢

r(i) = 7’(i_1) —_ azq(l)

check convergence; continue if necessary
end

 Quter 1teration 1n 64 bit rloating point and inner
iteration in 32 bit floating point
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2.5

56 2.25

2 4

1.75 1

1.5 1

1.25 4

0.75 1

Mixed Precision Computations for
Sparse Inner/Quter-type lterative Solvers

Speedups for mixed precision

Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)
(Higher is better)

mCG?
mPCG’
m GMRES °
m PGMRES’

11,142 25,980 79,275 230,793 602,091

Iterations for mixed precision
SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to 1, residual reduction (10-'?)

11,142 25,980 79,275 230,793 602,091 -&— Matrix Size

6,021 18,000 39,000 120,000 240,000 < Condition number
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< Intriguing Potential

- Exploit lower precision as much as possible
= Payoff in performance
» Faster floating point
» Less data to move
« Automatically switch between SP and DP to match
the desired accuracy
= Compute solution in SP and then a correction to the
solution in DP
Potential for GPU, FPGA, special purpose processors
= Use as little you can get away with and improve the
aCcuracy
Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where

Newton’s method is used. A )
Xi+1 = Xj —

f(xj) f/(xi)
: ](‘/ (xi ) Correction = - A\(b — Ax) ’
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< Summary

* Major Challenges are ahead for extreme
computing
= Parallelism
= Hybrid
* Fault Tolerance
= Power
= ... and many others not discussed here

 We will need completely new approaches and
technologies to reach the Exascale level

* This opens up many new opportunities for
applied mathematicians and computer
scientists



< Conclusions

* For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

* This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

* Moreover, the return on investment is more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured in decades.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
 No Moore’s Law for software, algorithms and applications
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< Employment Opportunities

* Looking for people to help with
= Manycore/GPU linear algebra libraries
= Performance Evaluation
= Distributed memory software

» Contact:
« Jack Dongarra dongarra@cs.utk.edu
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